60 research outputs found

    Diverging volumetric trajectories following pediatric traumatic brain injury.

    Get PDF
    Traumatic brain injury (TBI) is a significant public health concern, and can be especially disruptive in children, derailing on-going neuronal maturation in periods critical for cognitive development. There is considerable heterogeneity in post-injury outcomes, only partially explained by injury severity. Understanding the time course of recovery, and what factors may delay or promote recovery, will aid clinicians in decision-making and provide avenues for future mechanism-based therapeutics. We examined regional changes in brain volume in a pediatric/adolescent moderate-severe TBI (msTBI) cohort, assessed at two time points. Children were first assessed 2-5 months post-injury, and again 12 months later. We used tensor-based morphometry (TBM) to localize longitudinal volume expansion and reduction. We studied 21 msTBI patients (5 F, 8-18 years old) and 26 well-matched healthy control children, also assessed twice over the same interval. In a prior paper, we identified a subgroup of msTBI patients, based on interhemispheric transfer time (IHTT), with significant structural disruption of the white matter (WM) at 2-5 months post injury. We investigated how this subgroup (TBI-slow, N = 11) differed in longitudinal regional volume changes from msTBI patients (TBI-normal, N = 10) with normal WM structure and function. The TBI-slow group had longitudinal decreases in brain volume in several WM clusters, including the corpus callosum and hypothalamus, while the TBI-normal group showed increased volume in WM areas. Our results show prolonged atrophy of the WM over the first 18 months post-injury in the TBI-slow group. The TBI-normal group shows a different pattern that could indicate a return to a healthy trajectory

    The UCLA Study of Children with Moderate-to-Severe Traumatic Brain Injury: Event-Related Potential Measure of Interhemispheric Transfer Time

    Full text link
    Traumatic brain injury (TBI) frequently results in diffuse axonal injury and other white matter damage. The corpus callosum (CC) is particularly vulnerable to injury following TBI. Damage to this white matter tract has been associated with impaired neurocognitive functioning in children with TBI. Event-related potentials can identify stimulus-locked neural activity with high temporal resolution. They were used in this study to measure interhemispheric transfer time (IHTT) as an indicator of CC integrity in 44 children with moderate/severe TBI at 3-5 months post-injury, compared with 39 healthy control children. Neurocognitive performance also was examined in these groups. Nearly half of the children with TBI had IHTTs that were outside the range of the healthy control group children. This subgroup of TBI children with slow IHTT also had significantly poorer neurocognitive functioning than healthy controls-even after correction for premorbid intellectual functioning. We discuss alternative models for the relationship between IHTT and neurocognitive functioning following TBI. Slow IHTT may be a biomarker that identifies children at risk for poor cognitive functioning following moderate/severe TBI

    An Expanded Evaluation of Protein Function Prediction Methods Shows an Improvement In Accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent

    An expanded evaluation of protein function prediction methods shows an improvement in accuracy

    Get PDF
    Background: A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results: We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions: The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. Keywords: Protein function prediction, Disease gene prioritizationpublishedVersio

    Multisystem Inflammatory Syndrome in Children — Initial Therapy and Outcomes

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or be any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background: The assessment of real-world effectiveness of immunomodulatory medications for multisystem inflammatory syndrome in children (MIS-C) may guide therapy. Methods: We analyzed surveillance data on inpatients younger than 21 years of age who had MIS-C and were admitted to 1 of 58 U.S. hospitals between March 15 and October 31, 2020. The effectiveness of initial immunomodulatory therapy (day 0, indicating the first day any such therapy for MIS-C was given) with intravenous immune globulin (IVIG) plus glucocorticoids, as compared with IVIG alone, was evaluated with propensity-score matching and inverse probability weighting, with adjustment for baseline MIS-C severity and demographic characteristics. The primary outcome was cardiovascular dysfunction (a composite of left ventricular dysfunction or shock resulting in the use of vasopressors) on or after day 2. Secondary outcomes included the components of the primary outcome, the receipt of adjunctive treatment (glucocorticoids in patients not already receiving glucocorticoids on day 0, a biologic, or a second dose of IVIG) on or after day 1, and persistent or recurrent fever on or after day 2. Results: A total of 518 patients with MIS-C (median age, 8.7 years) received at least one immunomodulatory therapy; 75% had been previously healthy, and 9 died. In the propensity-score-matched analysis, initial treatment with IVIG plus glucocorticoids (103 patients) was associated with a lower risk of cardiovascular dysfunction on or after day 2 than IVIG alone (103 patients) (17% vs. 31%; risk ratio, 0.56; 95% confidence interval [CI], 0.34 to 0.94). The risks of the components of the composite outcome were also lower among those who received IVIG plus glucocorticoids: left ventricular dysfunction occurred in 8% and 17% of the patients, respectively (risk ratio, 0.46; 95% CI, 0.19 to 1.15), and shock resulting in vasopressor use in 13% and 24% (risk ratio, 0.54; 95% CI, 0.29 to 1.00). The use of adjunctive therapy was lower among patients who received IVIG plus glucocorticoids than among those who received IVIG alone (34% vs. 70%; risk ratio, 0.49; 95% CI, 0.36 to 0.65), but the risk of fever was unaffected (31% and 40%, respectively; risk ratio, 0.78; 95% CI, 0.53 to 1.13). The inverse-probability-weighted analysis confirmed the results of the propensity-score-matched analysis. Conclusions: Among children and adolescents with MIS-C, initial treatment with IVIG plus glucocorticoids was associated with a lower risk of new or persistent cardiovascular dysfunction than IVIG alone. (Funded by the Centers for Disease Control and Prevention.)
    • …
    corecore